Work Group Leader
Stephen Malin
Karloniska Institute
Germany
About
There is mounting evidence that the onset of numerous and diverse diseases are associated with changes in the mechanical properties of cells and tissue. It can be expected that a means of all-optically and non-invasively probing the viscoelastic properties of live cells and tissue has much potential for future diagnostic applications. To date, it has been shown that Brillouin light scattering (BLS) microspectroscopy – which allows for the extraction of different high-frequency elastic storage and loss moduli – can be used to distinguish between healthy and various diseased tissue, cells and bodily fluids, with new results being reported regularly. The goal of this Work Group is to further explore the potential of BLS in this regard, identify novel biomedical applications, and bring the technique and the technology closer towards routine clinical and diagnostic applications. More information on the specific goals of this Work Group can also be found in the BioBrillouin Memorandum of Understanding (MoU).
Stephen Malin
Karloniska Institute
Germany